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Abstract
Language understanding depends on context at multiple
levels of linguistic granularity. How does this context-
dependence differ across different cortical regions sup-
porting language processing? Recently, it has been
shown that electrophysiological responses to narrative
stimuli can be predicted by contextualized word vec-
tor representations extracted from next-word prediction
models. Here, we set out to apply and extend this ap-
proach within an electrocorticography (ECoG) dataset of
9 participants listening to a 7-minute narrative. For each
word in the story, we predicted the neural response based
on: (i) sensory features; (ii) non-contextualized word
vectors; and contextualized word vectors with context
scrambled at the word, sentence and paragraph levels.
We show that contextualized embeddings, on average,
are better predictors of broadband high-frequency (70+
Hz) power responses compared with non-contextualized
embeddings. Moreover, the improved encoding per-
formance of contextualized embeddings specifically de-
pended on the preceding context being provided intact
to the model. These initial results provide the basis
for mapping the timescale of context-dependence (word,
sentence, and paragraph level) for each intracranial site
across the cortical surface.
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Introduction
Human language understanding is contextual, as we interpret
each moment in a narrative in terms of the words, sentences
and paragraphs that came before. In the brain, it has been
suggested that scaffolding of language context is reflected in
a hierarchy of processing timescales: progressively increased
sensitivity to longer-scale language context along the corti-
cal processing hierarchy (Hasson, Yang, Vallines, Heeger, &
Rubin, 2008; Hasson, Chen, & Honey, 2015). However, this
prior timescale-mapping work depended on measuring neu-
ral responses to multiple narratives, each preserving different
scales of context.

Recently, it has become possible to map neural timescales
using next-word prediction algorithms known as language
models (LMs). Contextualized embeddings – vector repre-
sentations of words encoding their context-specific role in

a sequence – have been a key ingredient of LMs (Elman,
1990; Peters et al., 2018). Goldstein et al. (2022) have re-
ported that contextualized LM embeddings, relative to non-
contextualized, are better predictors of ECoG responses in
story-listening. Moreover, Caucheteux, Gramfort, and King
(2021) developed a LM-based context-scrambling method to
estimate TRWs in a story-listening fMRI dataset and largely
replicated the experimental findings by Lerner, Honey, Sil-
bert, and Hasson (2011). Here, we set out to combine the
approaches of Goldstein et al. (2022) and Caucheteux et al.
(2021), estimating the context-dependence timescales of neu-
ral responses in ECoG responses to a 7-minute narrative.

Methods

Preprocessing

The raw ECoG recordings of 9 subjects were first visually in-
spected and channels with excessive noise were excluded.
Data were re-referenced to the average reference and high-
pass filtered at 0.1 Hz. To estimate the broadband high fre-
quency component of the signal, we applied a bank of Mor-
let wavelets (6 cycles) to story-epoched data with frequencies
ranging from 70 to 200 Hz in steps of 5 Hz. After z-scoring and
log-transforming, we averaged the power time-series across
the frequencies. To focus on electrodes with high signal-to-
noise ratio, we selected, per participant, the top 5 electrodes
with highest repeat reliability (Pearson correlation of ECoG
responses to two repeats of the same story, Fig. 2, A).

Encoding models

Predictors (X) As a sensory predictor, we constructed a
3-dimensional vector representation for each word with dimen-
sions: word length (no. of characters), word duration (msec),
and the mean amplitude of the audio envelope. To obtain
non-contextualized word vectors, we used 50-dimensional
GloVe (Pennington, Socher, & Manning, 2014) word vectors.
To obtain contextualized word vectors, we used the 8th
layer contextualized embeddings (Caucheteux & King, 2022)
of the 12-layer GPT-2 transformer (Radford et al., 2019). We
reduced the GPT-2 embedding dimensionality from 768 to 50
by retaining the top 50 principal components. For all three
predictors, control predictors (yellow in Fig. 1) were con-
structed by randomly permuting word vectors of the same se-
quence across the time-steps before refitting the encoding
model. Context scrambling predictors were obtained by
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Figure 1: Encoding performance for sensory, non-contextualized, and contextualized word embeddings.
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Figure 2: A) Selected electrodes with high repeat reliability (across 8 participants, 1 participant not shown due to missing
information). B) Test-set encoding performance as a function of time lag for word, sentence and paragraph context scrambling.

randomly shuffling the context words/sentences/paragraphs
prior to each sequence element in the original story, follow-
ing Caucheteux et al. (2021).

Time-shifted neural response (Y) For every token, we av-
eraged the broadband power ECoG time-series in the window
of 0-100 msec post word onset. To model the time-course of
encoding performance, we time-shifted this response relative
to word onset from -1 to +1 seconds in steps of 25 msec.

Regression model ( f (X)) For every electrode, participant,
time lag, and predictor, we fit a separate ridge regression
model. We used 10-fold cross-validation to split the dataset
(Nsamples = 748) into training and test sets. Test-set perfor-
mance (ρ, Pearson correlation between predicted and ob-
served neural response) was averaged, per electrode and
participant, across the ten test-folds and subsequently across
the 5 electrodes, per participant. Finally, grand mean perfor-
mance was computed across the 9 participants.

Results and Discussion

Contextualized embeddings were superior predictors of neural
responses (Fig. 1). Contextualized predictors performed best
overall with the mean test-set correlation peak at 0.23, while
non-contextualized embeddings (middle) peak at 0.1, and the

sensory model (left panel) at 0.13. The time-courses of en-
coding model performance, relative to the time of word on-
set, revealed that the contextualized embedding performance
peaks before word onset (-0.07 sec). This observation is con-
sistent with the predictive encoding processes reported by
Goldstein et al. (2022), in which neural responses before word
onset contain information about the upcoming word.

The context-dependence effects we observed were primar-
ily driven by context within a sentence, rather than by context
beyond a sentence (Fig. 2, B). Thus, the advantage of contex-
tualized embeddings in our data likely derives from relatively
local semantics and syntactic effects.

Conclusions

Consistent with prior fMRI and ECoG studies (Goldstein et al.,
2022; Jain et al., 2020; Caucheteux et al., 2021), we find that
neural responses captured by neural language models are
predictive and context-dependent. We further show that the
context advantage in the superior and middle temporal gyri
are largely driven by within-sentence context effects. In or-
der to map processing timescales across the cortical surface,
we are now quantifying the contextual encoding performance
within individual electrodes, and are extending these analyses
to frontal cortical sites.
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